Metagenomic Assembly

Successes, Validation,
And
Challenges

Matthew Scholz
Los Alamos National Laboratory
Genome Sciences Division

Metagenomic Assembly is Complex

- Complexity dictates method of assembly
 - Simple communities assemble easily
 - Complex communities...do not
- Complexity dictates sequencing requirement
- More sequence means more complexity and more difficulty

It's a Tree!

Assembly Successes

- High throughput pipeline
- Improved assemblies
 - JGI/LANL has successfully assembled 123 metagenomes in last year
 - Average time ~ 1 week/sample
- HMP metagenome assemblies
 - LANL assembled 223 metagenomes from whole genome shotgun sequencing of HMP
 - Assembly of 10 site specific samples (multiple samples from same site)
- Validation of several metagenome assemblies

Assembly differences

HMP shotgun metagenome assembly

- Optimization
 - Tool Selection
 - Kmer Selection
 - Selection of # Cores
- Volume production
 - 1 Kmer
 - Metrics

JGI Metagenome Assembly

- Multiple tool selection
- Range of Kmers utilized
- Many different sample types

HMP assemblies

- Draft
- Many Samples
- Many metrics

JGI/LANL Metagenome Assembly Pipeline

JGI/LANL Assembly Process

- "Improved" merging of Multiple assemblies
- Statistical Metrics are better
- Validation supports these improved assemblies

Validation

- How do you validate metagenomes?
 - Contig Statistics
 - Read Mapping
 - Annotation
 - Similarity Searches
 - Phylogenetic distribution
 - Reference genomes

Read Mapping

- Are contigs correctly assembled?
 - Do read data confirm contigs?
 - Edge effects
- Generate information about coverage
 - Average Fold Coverage
 - Percent of Contig Covered
- SNP/INDEL information
 - Indication of diversity within sample

Finding Potentially Erroneous Contigs with Read mapping

- Read coverage of each base from pipeline.
- Lines delineate regions where mean coverage deviates past thresholds
- Is this a good contig?
 - Where did contig come from?
- Can use to automatically break or discard contigs that fail read-mapping

Reference Genomes

Ongoing Challenges

- Hardware/Software
 - Kmer assembly Speed/RAM tradeoff
 - Algorithms for metagenomes
 - Too much software
- How to Determine "Correct" assembly?
- Metadata
- Too much data
- Not enough coverage

Read Incorporation

Not Enough Coverage

- Coverage varies by sample
 - 1 Lane HiSeq is maximum for current hardware/assemblers (complex samples)

Concluding Thoughts

- We need metadata (standards)
- Tiers
 - 1. Assembly Statistics
 - 2. Assembly Level
 - 3. Contig analysis
- Scores

Classification of Metagenomes

1. Assembly Statistics

- % Read Incorporation
- Total Assembled Bases (post filtering?)
- G+C Content
- Coverage histograms

2. Assembly Level

- Draft
 - 1 assembler, 1 set of parameters
- Improved Draft
 - Current JGI/LANL assembly/merge method
 - Read based validation
- High Quality (Theoretical)
 - Binning strategies pre-assembly
 - Read based correction/trimming
 - Single cell genomes from site as references

Classification of Metagenomes

- 1. Assembly Statistics
- 2. Assembly Level
- 3. Contig analysis
 - Read mapping based validation
 - Clustering
 - Gene analysis

Many Thanks:

Metagenomics and Data Analysis Team

- Patrick Chain
- Tracey Freitas
- Ron Croonenberg
- Bin Hu
- Chien-Chi Lo
- Shawn Starkenburg
- Gary Xie
- Shannon Steinfadt
- Others...

Metagenome work

- Jim Tiedje
- Titus Brown
- Adina Howe
- HMP consortium
- Mihai Pop
- Joe Zhou
- Kostas Konstantinidis

Informatics Team

- Ben Allen
- Andy Seirp
- Criag Blackhart
- Yan Xu
- Todd Yilk

Single cell work

- Roger Lasken
- RamunasStepanaskus
- Steve Hallam

Management Team

- Chris Detter
- David Bruce
- Tracy Erkkila
- Lance Green
- Shunsheng Han

Wet-lab Team

- Cheryl Gleasner
- Kim McMurry
- Krista Reitenga
- Xiaohong Shen
- Others...

Project Management

- Shannon Johnson
- Lynne Goodwin
- Others...

Kmer team

- Joel Berendzen
- Nick Hengartner
- Ben McMahon
- **Judith Cohn**

Finishing and SCG

- Olga Chertov
- Karen Davenport
- Armand Dichosa
- Michael Fitzsimons
- **Ahmet Zeytun**
- Others...

Metagenomic Assembly Strategies

Bigger computers

- 1 Lane HiSeq PE reads = 400 M reads
 - 1TB RAM (complex communities)

Better Assemblers

- MetaIDBA
- MetaVelvet
- Ray
- ABySS
- AllPaths

Binning Reads

- Unsupervised/Heuristic
- Machine Learning
- Statistical
- Reference Based
- To Infinity and Beyond...

